Part Number Hot Search : 
BS804 A1516 A2F060 A2F060 CRB32C1 LT1089MK MAX168 351S8E
Product Description
Full Text Search
 

To Download MC74LCX07DTR2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MC74LCX07 Low-Voltage CMOS Hex Buffer with Open Drain Outputs
With 5 V-Tolerant Inputs
The MC74LCX07 is a high performance hex buffer operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers. These LCX devices have open drain outputs which provide the ability to set output levels, or do active-HIGH AND or active-LOW OR functions. A VI specification of 5.5 V allows MC74LCX07 inputs to be safely driven from 5.0 V devices.
Features http://onsemi.com MARKING DIAGRAMS
14 14 1 SOIC-14 D SUFFIX CASE 751A 1 LCX07G AWLYWW
* * * * * *
Designed for 2.3 to 3.6 V VCC Operation 5.0 V Tolerant Inputs/Outputs LVTTL Compatible LVCMOS Compatible 24 mA Output Sink Capability Near Zero Static Supply Current (10 mA) Substantially Reduces System Power Requirements Latchup Performance Exceeds 500 mA
14 1 TSSOP-14 DT SUFFIX CASE 948G 1 14 LCX 07 ALYWG G
* * Wired-OR, Wired-AND * Output Level Can Be Set Externally Without Affecting Speed of * *
Device ESD Performance: Human Body Model >1500 V; Machine Model >200 V Pb-Free Packages are Available*
14 SOEIAJ-14 M SUFFIX CASE 965 1 74LCX07 ALYWG
14 1
VCC 14
A3 13
O3 12
A4 11
O4 10
A5 9
O5 8
A = Assembly Location L, WL = Wafer Lot Y, YY = Year W, WW = Work Week G = Pb-Free Package G = Pb-Free Package (Note: Microdot may be in either location)
ORDERING INFORMATION
1 A0 2 O0 3 A1 4 O1 5 A2 6 O2 7 GND
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.
Figure 1. Pinout: 14-Lead (Top View)
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
(c) Semiconductor Components Industries, LLC, 2005
1
May, 2005 - Rev. 10
Publication Order Number: MC74LCX07/D
MC74LCX07
A0 A1 A2 A3 A4 A5 1 3 5 13 11 9 * * * * * * * OD 2 4 6 12 10 8 O0 O1 O2 O3
PIN NAMES
Pins An On Function Data Inputs Outputs
TRUTH TABLE
O4 O5 An L H On L Z
Figure 2. Logic Diagram MAXIMUM RATINGS
Symbol VCC VI VO IIK IOK Parameter DC Supply Voltage DC Input Voltage DC Output Voltage DC Input Diode Current DC Output Diode Current Value -0.5 to +7.0 -0.5 v VI v +7.0 -0.5 v VO v +7.0 -50 -50 +50 IO ICC IGND TSTG DC Output/Sink Current DC Supply Current Per Supply Pin DC Ground Current Per Ground Pin Storage Temperature Range +50 $100 $100 -65 to +150 Output in HIGH or LOW State (Note 1) VI < GND VO < GND VO > VCC Condition Unit V V V mA mA mA mA mA mA C
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. IO absolute maximum rating must be observed.
ORDERING INFORMATION
Device MC74LCX07D MC74LCX07DG MC74LCX07DR2 MC74LCX07DR2G MC74LCX07DT MC74LCX07DTG MC74LCX07DTR2 MC74LCX07DTR2G MC74LCX07M MC74LCX07MG MC74LCX07MEL MC74LCX07MELG Package SOIC-14 SOIC-14 (Pb-Free) SOIC-14 SOIC-14 (Pb-Free) TSSOP-14* TSSOP-14* TSSOP-14* TSSOP-14* SOEIAJ-14 SOEIAJ-14 (Pb-Free) SOEIAJ-14 SOEIAJ-14 (Pb-Free) Shipping 55 Units / Rail 55 Units / Rail 2500 Tape & Reel 2500 Tape & Reel 96 Units / Rail 96 Units / Rail 2500 Tape & Reel 2500 Tape & Reel 50 Units / Rail 50 Units / Rail 2000 Tape & Reel 2000 Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb-Free.
http://onsemi.com
2
MC74LCX07
RECOMMENDED OPERATING CONDITIONS
Symbol VCC VI VO IOH Supply Voltage Input Voltage Output Voltage HIGH Level Output Current (HIGH or LOW State) VCC= 3.0 V-3.6 V VCC= 2.7 V-3.0 V VCC= 2.3 V-2.7 V VCC= 3.0 V-3.6 V VCC= 2.7 V-3.0 V VCC= 2.3 V-2.7 V -40 0 Parameter Operating Data Retention Only Min 2.0 1.5 0 0 Typ 2.3 to 3.3 Max 5.5 5.5 5.5 5.5 -24 -12 -8 +24 +12 +8 +85 10 Unit V V V mA
IOL
LOW Level Output Current
mA
TA Dt/DV
Operating Free-Air Temperature Input Transition Rise or Fall Rate, VIN from 0.8 V to 2.0 V, VCC = 3.0 V
C ns/V
DC ELECTRICAL CHARACTERISTICS
TA = -40C to +85C Symbol VIH Characteristic HIGH Level Input Voltage (Note 2) Condition 2.3 V v VCC v 2.7 V 2.7 V v VCC v 3.6 V VIL LOW Level Input Voltage (Note 2) 2.3 V v VCC v 2.7 V 2.7 V v VCC v 3.6 V VOL LOW Level Output Voltage 2.3 V v VCC v 3.6 V; IOL = 100 mA VCC = 2.3 V; IOL= 8 mA VCC = 2.7 V; IOL= 12 mA VCC = 3.0 V; IOL = 16 mA VCC = 3.0 V; IOL = 24 mA II IOFF ICC DICC Maximum Input Leakage Current Power-Off Leakage Current Maximum Quiescent Supply Current Increase in ICC per Input 2.3 V v VCC v 3.6 V, 0 V v VI v 5.5 V VCC = 0V, VO or VI = 5.5V 2.3 V v VCC v 3.6 V, VI= VCC or GND 2.3 V v VCC v3.6 V, 3.6 V vVI v5.5 V 2.3 V v VCC v 3.6 V 4.5 V v VCC v 5.5 V Min 1.7 2.0 0.7 0.8 0.2 0.3 0.4 0.4 0.55 $5 10 10 $10 500 1.0 mA mA mA mA mA V V Max Unit V
2. These values of VI are used to test DC electrical characteristics only.
AC ELECTRICAL CHARACTERISTICS
Limits TA= -405C to +855C VCC = 3.3 V $ 0.3 V CL= 50 pF Symbol tPLZ tPZL Parameter Propagation Delay Input to Output Min 0.5 0.5 Max 3.0 3.0 VCC= 2.7 V CL= 50 pF Min 0.8 0.8 Max 3.7 3.7 VCC = 2.5 V $ 0.2 V CL= 30 pF Min 0.8 0.8 Max 3.8 3.8 Unit ns ns
DYNAMIC SWITCHING CHARACTERISTICS
TA = +25C Symbol VOLP VOLV Characteristic Dynamic LOW Peak Voltage (Note 3) Dynamic LOW Valley Voltage (Note 3) Condition VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V VCC = 2.5 V, CL = 30 pF, VIH =2.5 V, VIL = 0 V VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V VCC = 2.5 V, CL = 30 pF, VIH = 2.5 V, VIL = 0 V Min Typ 0.9 0.7 -0.8 -0.6 Max Unit V V
3. Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.
http://onsemi.com
3
MC74LCX07
CAPACITIVE CHARACTERISTICS
Symbol CIN COUT CPD Input Capacitance Output Capacitance Power Dissipation Capacitance Parameter Condition VCC = 3.3 V, VI = 0 V or VCC VCC = 3.3 V, VI = 0 V or VCC 10 MHz, VCC = 3.3 V, VI = 0 V or VCC Typical 7 8 25 Unit pF pF pF
VCC An Vmi Vmi 0V tPZL tPLZ Vmo
On
VLZ VOL
PROPAGATION DELAYS tR = tF = 2.5 ns, 10% to 90%; f = 1MHz; tW = 500 ns
VCC Symbol Vmi Vmo VLZ 3.3 V $ 0.3 V 1.5 V 1.5 V VOL + 0.3 V 2.7 V 1.5 V 1.5 V VOL + 0.3 V 2.5 V $ 0.2 V VCC/2 VCC/2 VOL + 015 V
Figure 3. AC Waveforms
VCC 6 V or VCC 2 PULSE GENERATOR RT DUT CL R1 RL GND
TEST tPZL, tPLZ Open Collector/Drain tPLH and tPHL tPZH, tPHZ CL = CL = RL = RT =
SWITCH 6V 6V GND
50 pF at VCC = 3.3 "0.3 V or equivalent (includes jig and probe capacitance) 30 pF at VCC = 2.5 "0.2 V or equivalent (includes jig and probe capacitance) R1 = 500 W or equivalent ZOUT of pulse generator (typically 50 W)
Figure 4. Test Circuit
http://onsemi.com
4
MC74LCX07
PACKAGE DIMENSIONS
SOIC-14 D SUFFIX CASE 751A-03 ISSUE G
-A-
14 8 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019
-B-
P 7 PL 0.25 (0.010)
M
B
M
1
7
G C
R X 45 _
F
-T-
SEATING PLANE
D 14 PL 0.25 (0.010)
K
M
M
S
J
TB
A
S
DIM A B C D F G J K M P R
TSSOP-14 DT SUFFIX CASE 948G-01 ISSUE A
14X K REF NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. MILLIMETERS INCHES MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 --- 1.20 --- 0.047 0.05 0.15 0.002 0.006 0.50 0.75 0.020 0.030 0.65 BSC 0.026 BSC 0.50 0.60 0.020 0.024 0.09 0.20 0.004 0.008 0.09 0.16 0.004 0.006 0.19 0.30 0.007 0.012 0.19 0.25 0.007 0.010 6.40 BSC 0.252 BSC 0_ 8_ 0_ 8_
0.10 (0.004) 0.15 (0.006) T U
S
M
TU
S
V
S
N
2X
L/2
14
8
0.25 (0.010) M
L
PIN 1 IDENT. 1 7
B -U-
N F DETAIL E K K1 J J1
0.15 (0.006) T U
S
A -V-
SECTION N-N -W-
C 0.10 (0.004) -T- SEATING
PLANE
D
G
H
DETAIL E
DIM A B C D F G H J J1 K K1 L M
http://onsemi.com
5
EEE CCC EEE CCC
MC74LCX07
PACKAGE DIMENSIONS
SOEIAJ-14 M SUFFIX CASE 965-01 ISSUE O
14
8
LE Q1 E HE M_ L DETAIL P
1
7
Z D e A VIEW P
c
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018). DIM A A1 b c D E e HE L LE M Q1 Z MILLIMETERS MIN MAX --- 2.05 0.05 0.20 0.35 0.50 0.18 0.27 9.90 10.50 5.10 5.45 1.27 BSC 7.40 8.20 0.50 0.85 1.10 1.50 10 _ 0_ 0.70 0.90 --- 1.42 INCHES MIN MAX --- 0.081 0.002 0.008 0.014 0.020 0.007 0.011 0.390 0.413 0.201 0.215 0.050 BSC 0.291 0.323 0.020 0.033 0.043 0.059 10 _ 0_ 0.028 0.035 --- 0.056
b 0.13 (0.005)
M
A1 0.10 (0.004)
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480-829-7710 or 800-344-3860 Toll Free USA/Canada Fax: 480-829-7709 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative.
http://onsemi.com
6
MC74LCX07/D


▲Up To Search▲   

 
Price & Availability of MC74LCX07DTR2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X